
DDOS MITIGATION WITH 
NETMAP AND RUST

45 days later



WHAT’S THE PROBLEM 
AGAIN?

• TCP 3-way handshake

• kernel can’t handle the load



HOW DO WE SOLVE IT?

• developing our own solution from scratch using 
userland networking



HOW DO WE SOLVE IT?



WHERE WE LEFT LAST TIME
• 5M SYN packets, 16 cores utilised



A CHALLENGER APPEARS





WHY SO SLOW?

• we’re so slow, kernel developers are catching up 

• that’s no good



WHY SO SLOW?
• netmap generic driver

• using host ring

• locks

• channels

• rebuilding packets each time



NETMAP GENERIC DRIVER
• why is it slow?

• packets still go through linux network stack

• solution: use native driver

• problem: doesn’t work at first

• solution: read the source, drop host ring



HOST RING
• netmap has a concept of “host ring”

• used to inject packets back into linux network stack

• problem: can only have one per interface, with 12 
queues this is gonna be a contention point

• solution: get rid of it, use a dedicated host and L2-
forwarding



LOCKS
• want multiple hosts behind our protection

• want hot config reload

• use a global “config” structure and protect it with 
locks

• it’s mostly readonly anyway, that would be no 
problem, right?



LOCKS
• it’s mostly readonly anyway, that would be no problem, right?

• wrong

• when you’re dealing with 10M packets per second and have to look 
up things for every packet (twice)

• rust std uses wrappers around pthread locks

• these are not known for good performance

• no good for Chrome, definitely no good for us



LOCKS
• problem: no good for Chrome, definitely no good for us

• solution: replace all locks with parking_lot locks

• invented by Chrome people

• smaller in size, threads are kept in a separate structure 
from the lock

• adaptive: tries spinlock first



LOCKS
• much better

• still slow?

• thread local storage to the rescue

• copy necessary information to TLS

• sync with global configuration every 10 seconds ± some 
microseconds

• almost zero contention



CHANNELS
• rust channels, used to push packets from RX to TX 

thread

• basically a vector behind a mutex

• MUTEX?!

• yeah, we just removed these, and this is their 
comeback



CHANNELS

• problem: mutex strikes back

• solution: port rust std channels to parking_lot

• https://github.com/polachok/mpsc

https://github.com/polachok/mpsc


CHANNELS

• https://github.com/polachok/mpsc

• better, but not still there yet

• we’re not doing any “m” in mpsc

• let’s go with fully lockless channels

https://github.com/polachok/mpsc


CHANNELS
• let’s go with fully lockless channels

• there’s a crate for that: https://crates.io/crates/bounded-
spsc-queue

• pretty good!

• still does copying (RX → Channel, Channel → TX)

• get rid of second copy, use a reference

https://crates.io/crates/bounded-spsc-queue


REBUILDING PACKET

• we have to build a reply (SYN + ACK) packet for 
each SYN packet

• using libpnet for packet parsing and building

• great library overall

• uses byte level operations and shifts



REBUILDING PACKET

• note that the reply is 80% identical for each SYN

• let’s build a template, copy it over and replace stuff 
we need to replace (ip, port, ack, seq)

• 30% faster



WHERE ARE WE NOW?
• 12.65M packets, 7.5 cores utilised (12 cores at 

~60%)



WHERE ARE WE NOW?
• 12.65M packets, 7.5 cores utilised (12 cores at ~60%)

• multiple hosts

• live config reload

• pcap-style packet filtering (“tcp and dst port 80 or 22”)

• cookie replies validated, states kept for each valid connection

• per-thread metrics in influx



Q&A


